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The total synthesis of the tetracyclic alkaloids stemonamide (1) and isostemonamide (2) is presented. The key step is the reaction between
a silyloxyfuran and an N-acyliminium ion. The second quaternary center is created by an intramolecular aldol spirocyclization. After 1,4-
addition of an appropriate side chain, the methyl and double bond are installed by Mannich reaction. The seven-membered ring is closed by
intramolecular nucleophilic displacement.

The tetracyclic alkaloids stemonamidg) @nd isostemon-  summarized,but no total synthesis of alkaloids having the
amide (2) were isolated from the roots®femona japonica  spirocyclic stemonamide nucleus has been repdiféd.now

by Xu et al. in 1994. The highly compact spirocyclic  report the first total synthesis of)-stemonamide (1) and
structures of these compounds were elucidated through(=)-isostemonamide (2).

extensive NMR analyses and by comparison with data for Our approach, retrosynthetically presented in Scheme 1,
stemonamine3, for which an X-ray structure had been envisioned the use of acyliminium chemisttyp form the
obtained (Figure 1). C(9a) quaternary center, followed by aldol spirocyclization

_ to obtain the contiguous C(12) quaternary center. The four-

Scheme 1. Retrosynthetic Analysis

Figure 1.

Extensive synthetic work towardstemonaalkaloids,
culminating in a number of elegant total syntheses, has been

(1) Ye, Y.; Qin, G.-W.; Xu, R.-SJ. Nat. Prod.1994,57, 665. TMSOM OH
(2) lizuka, H.; Irie, H.; Masaki, N.; Osaki, K.; Uyeo, S. Chem. Soc.,
Chem. Commurl973, 125.
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carbon alkyl chain required to build the final azepine ring isomer9 was subsequently assigned the relative stereochem-
was to be introduced by conjugate Grignard addition to a istry of stemonamide, whereas the more polar isoffer

tricyclic enone intermediate.

corresponded to the isostemonamide series as a result of the

As depicted in Scheme 2, the synthesis began with individual X-ray analyses of their respective derived targets

Grignard addition of (3-benzyloxypropyl)magnesium bro- 1and2.
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a(a) BnO(CH)sMgBr, Et,O, reflux, 30 min; (b) PPTS, MeOH,
rt, 30 min, 90% (2 steps); (c) 415% Pd/C, 3 h, 90%; (d) BF
Et,O, CHCly, rt, 40 min, 82%.

mide to succinimided. The resulting unstable hemiaminal

was protected as the methoxy derivatise which upon

hydrogenolytic debenzylation afforded the spiro compound

6 in 66% overall yield fromd4.

The first quaternary center was created by addition of

silyloxyfuran 76 to theN-acyliminium ion generated from

with BFsEt,O at room temperature® Under these conditions

a 1:2 mixture of diastereomeric alcoh@svas produced in
82% vyield (Scheme 2). Swern oxidation of alcohds

produced the corresponding aldehydes which were cyclized
directly using DBU to yield tricyclic aldol products, con-
verted by Swern oxidation to a 1:1 mixture of tricyclic
ketones9 and 10 (Scheme 3). These ketones were readily
separated by column chromatography; the faster eluting

Scheme 3

0
0
H b, . -
H N0 . \A\o X \A\o
PMB )
PMB PMB
OH

O
O

0.0 \ OMe

N (¢} N (e}

PMB PMB
9, stemonamide series 11, stemonamide series
10, isostemonamide series 12, isostemonamide series

a(a) (COCIy, DMSO, TEA, CHCl; (b) DBU, CHCly, over-
night, rt; (c) (COCI}, DMSO, TEA, CHCI,, 70% (3 steps); (d)
TBDMSOTHT, collidine, toluene, 7 h, OC to room temperature,
80% (stem. series) and 68% (isostem. series); (e) Pd(Ms)
DMSO, 80°C, 24—48h, 93%11) and 89% 12).
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To effect the desired conjugate addition of the azepine
ring carbons, conversion of these saturated ketones to the
corresponding conjugated enones was required. Our initial
attempts to dehydrogenate keto®emnd10 using selenium
chemistry failed. Deprotonation 8fwith LDA and reaction
with PhSeC or reaction of its silyl enol ether with PhSe€l
gave the corresponding-phenylselen derivatives in very
low yield. The desired enonekl and 12 were ultimately
synthesized by treating theert-butyldimethylsilyl enol
etherd! with Pd(OAc)*? to produce the enones in 76% and
61% yields, respectively (Scheme 3).

Conjugate addition of the Grighard reagetf in the
presence of CuBfMe,S occurs mainlyanti to the C-N
bond (Scheme 4). In the stemonamide series, eftgave
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a(a) PMBO(CH)4MgBr 13, 5% CuBr—MeS, TMSCI, HMPA,
THF, —78 °C, 30 min, 74% ofl40/148, 57% of15, 32% of16.

a 6.4:1 ratio of 14a and 144 in 74% yield. In the
isostemonamide series, enof@ gave only products of

(3) Pilli, R. A.; Ferreira de Oliveira, M. CNat. Prod. Rep2000, 17,
117.

(4) Narasaka et al.Bull Chem. Soc. Jpn1996, 69, 2063) have
synthesized the tricyclic alkaloidH)-stemoamide, mistakenly designated
as (+)-stemonamide by these authors. For a discussion, see ref 3.

(5) (a) Hiemstra, H.; Speckamp, W. N. l@omprehensie Organic
SynthesisTrost, B. M., Ed.; Pergamon Press: Oxford, 1991, Vol. 2, Chapter
4.1, pp 1047—-1082. (b) Speckamp, W. N.; Moolenar, MTétrahedron
2000,56, 3817.

(6) Pelter, A.; Al-Bayati, R. H. I.; Ayoub, M. T.; Lewis, W.; Pardasani,
P.; Hansel, RJ. Chem. Soc., Perkin Trans.1B87, 717.

(7) (a) Arai, Y.; Kontani, T.; Koizumi, TTetrahedron: Asymmet}992,

3, 535. (b) Arali, Y.; Kontani, T.; Koizumi, TJ. Chem. Soc., Perkin Trans.
1 1994, 15. (c) Louwrier, S.; Ostendorf, M.; Boom, A.; Hiemstra, H.;
Speckamp, W. NTetrahedron1996,52, 2603.

(8) Martin has used a similar addition of a silyloxyfuran to an iminium
species in his total synthesis of tBéemonaalkaloid croomine. Martin, S.
F.; Barr, K. J.J. Am. Chem. S0d.996,118, 3299.

(9) Reich, H. J.; Renga, J. M.; Reich, I. . Am. Chem. S0d.975,97,
5434,

(10) Danishefsky, S.; Zamboni, R.; Kahn, M.; Etheredge, S. Am.
Chem. Soc1981,103, 3460.
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a-attack,15and16, in yields of 57% and 32%, respectively. unsuccessful, giving mainly products derived from depro-
The use of TMSCI and HMPA as additives was required tection of the O-PMB group and addition of the solvent to
for any reaction to take place in acceptable yiéfdis our the methylene group. In the case of ketorieg RhC}
case, examination of molecular models suggests that theisomerization did produce ca. 10% the desired enone system
steric hindrance of the N-PMB group is responsible for the of 19. This observation suggested the hypothesis that steric
observed stereoselectivity in the cuprate additfadthough hindrance by the large N-PMB substituent interfered with
another factor that can contribute to thasti-diastereo- the formation of the hypotheticatalkyl intermediate® The
selectivity is the use of TMSCI as additive. isomerization requires the metal and the endocyclic hydrogen

A Mannich reaction was now used to install tirenethyl H-9 to besyn This hypothesis was confirmed by experiments
group as well as to provide unsaturation (Scheme 5). In thewith pure17a.and175. While treatment with Rhglof the

o-isomer (L 7a) gave a complex mixture of products without

_ traces of isomerization, thg-isomer (173) afforded the
expected endocyclic alkene with partial loss of the O-PMB
group in ca. 60% vyield under the same conditions. This
obstacle was cleanly overcome by initial removal of the
N-PMB (and O-PMB) groups in th&7a/g mixture and in
18, using cerium(lV) ammonium nitraté.The resulting
unprotected lactams then underwent facile Rh@¢diated
isomerization to yield the desired enon&8 and 20 in
acceptable yields.

Azepine ring closure was then achieved by intramolecular
nucleophilic displacement of the mesylated and 22
(Scheme 6%? Reaction of the mesylatg1l with NaH in

Scheme 5
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a(a) KH, MeN=CH,"CRCOO", THF, overnight, 67%X7) and
85% (18); (b) CAN, CHCN—-H,0, 2 h, 80% (stem.) and 75%
(isostem.); (c) RhGIxH,O, EtOH—H,0O (10:1), reflux, 36h, 66%
(19) and 69% (20); (d) M&N=CH,™CRCOO~, CHyCl, rt, 3 h,
96%

stemonamide series, deprotonation of tde/ mixture with
KH1® and treatment with dimethylmethyleneammonium
trifluoroacetaté’ gave thea-methylene ketone&7 in 67%
yield. Under the same conditions, ketone substtétgave
a-methylene compound8 in 85% vyield. The TMS enol
etherl5, also obtained in the 1,4-addition, was converted to
18in 96% yield by direct treatment with the Mannich reagent (a) MsCI, DMAP, py, CHCl, 0°C, 1 h (stem.), 4 h (isostem.);
in CH,Cl, at room temperatur®. (b) NaH, THF, rt, 30 h (stem.), 5 h (isostem.).

Our first attempts to isomerize the exocyclic double bond
of 17 and 18 into the ring using RhGI® were largely

(x)-isostemonamide

tetrahydrofuran produced racemic stemonangijen 33%
yield, along with 10% of unreacte®l. In a similar way,

(11) Arseniyadis, S.; Rico Ferreira, M. R.; Quilez del Moral, J.; Martin
Hernando, J. |.; Potier, P.; Toupet, Letrahedron: Asymmetr$998,9,

4055. isostemonamidé?) was prepared in 58% vyield.
(12) (@) Ito, Y.; Hirao, T.; Saegusa, J. Org. Chem1978,43, 1011. The structures of our synthetic stemonamfdend iso-
‘Ttgtr;ahfggr'ﬁ;nﬁeﬁig';g*g%{"”;;é; - R Kraus, G. A Hahn, P.; Zeng, D 0 onamické were corroborated by single-crystal X-ray
(13) Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajimal étra- determination® of each compound and by their elemental

hedron Lett.1986,27, 4025.
(14) (a) Posner, G. HOrg. React.1972,19, 1. (b) Rossiter, B. E.;
Swingle, N. M.Chem. Rev1992,92, 771.

analyses and NMR, IR and mass spectra. THdiNMR

(15) Krause, N.; Gerold, AAngew. Chem., Int. Ed. Endl997,36, 186. (20) Yamamoto, A. InOrganotransition Metal ChemistryWiley-
(16) Roberts, J. L.; Borromeo, P. S.; Poulter, C.T2trahedron Lett. Interscience: New York, 1986; pp 37374. A mechanism throughvaallyl
1977, 1621. intermediate also requires a hydrogen abstraction fronmutfeece of the
(17) Ahond, A.; Cave, A.; Kan-Fan, C.; Husson, H.-P.; de Rostolan, J.; molecule.
Potier, P.J. Am. Chem. S0d.968,90, 5622. (21) Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.; Okamoto,
(18) Danishefsky, S.; Kitahara, T.; McKee, R.; Schuda, PJ.FAm. T.; Shin, C.-G.Bull. Chem. Soc. Jpr1985,58, 1413.
Chem. So0c1976,98, 6715. (22) (a) Williams, D. R.; Reddy, J. P.; Amato, G. Betrahedron Lett.
(19) Andrieux, J.; Barton, D. H. R.; Patin, H. Chem Soc., Perkin Trans. 1994,35, 6417. (b) Kohno, Y.; Narasaka, Bull Chem. Soc. JpriLl996,
11977, 359. 69, 2063.
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and3C NMR spectra were indistinguishable from spectra  Acknowledgment. We thank the University of Rochester
kindly provided to us by Prof. Y. Y& Our route comprises  for partial support of this research.

the first total syntheses ofH)-stemonamide andd()-

isostemonamide in 4% and 7% yields from succinimide

respectively. Supporting Information Available: Data for9, 10,11,
@3 (1 coor | 24241 °C (EIOATCHC). R 12,21, and22. *H and*3C NMR spectra of fo9, 10, 11,
-1: colorless crystals, mp ° tOAC . ;

(cm 1) 2925, 1765, 1608, 1661, 1456, 1389, 1326, 1145, 1075, 1006, 858, -2+ 21, and22.*H and™*C NMR spectra of synthetit and
14 NMR (400 MHz, CDC}): 1.22-1.44 (2H, m); 1.81 (1H, bd] = 17.0); 2. ORTEP plots ofl and2. This material is available free

1.84 (3H, s); 1.93 (1H, dff = 8.8, 12.5); 1.99 (3H, s); 2.05—2.16 (2H, m); i .
297 (IH, ddJ = 8.8, 16.6); 2.34 (i, dd] =78, 12.5), 2.56 (1. ddd! of charge via the Internet at http://pubs.acs.org.

J=7.8,12.5, 16.6); 2.82 (1H, bi,= 13.0); 2.97 (1H, bdd) = 5.8, 12.8);

3.97 (3H, s); 4.16 (1H, bd] = 14.4).13C NMR (100 MHz, CDC4): 8.4, OLO10106E
9.1,27.3,29.8,30.1, 31.9, 41.2, 59.2, 74.5, 90.1, 99.6, 136.9, 168.6, 170.9,
172.9, 175.8, 196.5. APCI: 663 ([2MH]10), 332 ([MH]", 100), 207 (9),

125 (12). HRMS (DCI/NH): calcd for GgHzoNOs miz = 332.1498, found
332.1507. Anal. Calcd: C, 65.24; H, 6.39. Found: C, 65.53; H, 6.58.  26.9, 27.6, 29.4, 29.7, 42.3, 59.8, 73.5, 86.4, 102.7, 136.6, 168.7, 171.7,

(24) (£)-2: colorless crystals, mp 22227 °C (EtOAc/CHCLy). IR 172.6, 174.6, 196.9. APCI: 663 ([2MH]16), 332 ([MH]", 100). HRMS
(cm™1): 2926, 2360, 1766, 1698, 1661, 1450, 1393, 1331, 1248, 1165, 1126, (DCI/NH3): calcd for GgH22NOs m/z= 332.1498, found 332.1495. Anal.
1073, 1036, 1006, 963, 7344 NMR (400 MHz, CDC}): 1.22-1.43 (2H, Calcd: C, 65.24; H, 6.39. Found: C, 65.36; H, 6.59.

m); 1.76 (1H, bdJ = 14.2); 1.84 (3H, s); 1.90 (1H, di,= 9.1, 13.0); 2.05 (25) Huffman, J. C.; Molecular Structure Center, Department of Chem-
(3H, s); 2.01-2.04 (2H, m); 2.24 (1H, dddi= 7.1, 13.0, 16.5); 2.33 (1H, istry, Indiana University.

dd,J= 9.1, 16.5); 2.59 (1H, dd] = 7.1, 13.0); 2.96-2.98 (2H, m); 4.13 (26) We thank Prof. Y. Ye (Shanghai Institute of Materia Medica) for
(3H, s); 4.14 (1H, bd) = 15.0).13C NMR (100 MHz, CDC4): 8.3, 9.2, sending us copies dH and3C NMR spectra of natural and 2.
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